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I.  INTRODUCTION

1-3 have

Recent experimental studies of transition metal hexafluorides
indicated that the spectroscopically observed dynamic Jahn-Teller (JT) effects
are not adequately explained by the usual linear JT theory4; quadratic terms,
at least, are required in the vibronic Hamiltonian. In order to treat hexa-
fluoride data quantitatively, it would be desirable to solve the problem of

two JT-active vibrations (v; (eg) and vg (tzg)) vibronically coupled to a Tgq

electronic state for a Hamiltonian complete up to quadratic terms [r8q X (eg +

t29)]QUAD' Unfortunately, however, the requisite numerical methods are not
feasible given currently available computers. In fact, even the [rsg X tZg]QUAD
problem alone presents an arduous task. The [rag X eg]QUAD coupling problem

is, however, readily soluble. Its solution is presented here and is found

to generate a qualitative insight into the nature of the quadratic portion of

the JT interaction.

Previous work on [r8g X eg]QUAD (or the very closely related problem:
4 4 5

[Eg X eg]QUAD) has focused on the weak coupling 1imit™ or on the case for
which linear coupling is Iarge.6 In the present work matrix elements are “
given which allow full secular matrices for [r89 X eg]QUAD to be set up and
diagonalized numerically. Given a sufficiently large enough truncated secular
matrix, accurate eigenvalues and eigenvectors can be obtained for any values
of the linear and quadratic parameters. These secular matrices are also appli- ﬁ

cable to the [Eg X eg]QUAD situation.
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II.  THEORY
!

The first step toward obtaining the necessary matrix elements for
[r‘89 X eg]QUAD is to find the vibronic Hamiltonian. Eng]man4 has discussed
in detail the group theoretical techniques which allow a parametric Hamil-

tonian to be obtained; it is given here with only minor modifications: §

- Alo) A1) A (2) A (2)

géiiﬁr ” ééié? = é;if ; 4223?29/7.) g éZZf(23j;) e (1)

in which
/\7(0) / A2 A2 2 2
&é -_-2_ (,% "De)*éﬁ_(?e .*_ﬁé )}_I_') (2)

F =—fé(ge,+?éfz_)/ (3)

F R 2
"—5/3/7) . [/((@2 * Ye B (4)

(&)

dic) B ilgi-gii s~ dg g 2 ] Y

(T?Q9, ?Q:) are the mass-weighted normal coordinates of the &g vibration,
s A
L /" : /2 ) are the conjugate mass-weighted momenta, kc is the vibra-
tional force constant, I is the 4 x 4 identity matrix, (26, Ca’ CC) are the ,

linear and quadratic coupling parameters, and (f" , /i, /3) are Dirac

matrices.4 In the following discussion we will also make use of oy, 02, 03,

which are additional Dirac matrices as given in reference 4.

Choice of vibronic basis set is important since many matrix elements need

to be calculated. In any case, the basis will involve two-dimensional harmonic [
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oscillator functions, {X(n,,2;)} and vectors which represent the four elec-
tronic components {V(oa. o3)}. The {7(03.03)} are eigenvectors of both p; and
oy with eigenvalues p3 = + 1 and o3 = + 1. The question of how to combine
these factors into a vibronic basis set that is most convenient is now addressed.
One approach, which will only be outlined, involves utilizing molecular point
group theory. The vibrational factors, however, do not transform as standard
irreducible representations of 0; but appropriate linear combinations of these
functions can be generated which do so transform. The symmetrized vibrational
factors and the electronic factoré, which transform as FSg’ can be combined
using Clebsh-Gordon coefficients to give vibronic functions which transform
Separate secular matrices can then be formed in the

as Fsg. r, , or Ps

7 :
usual fash?on. Th?s method will not be used, however, because the calcula-
tion of matrix elements within this basis set is more cumbersome than need
be.

An alternate approach is to use the same vibronic basis that is used in

the linear problem. These are written as follows:

E (nz, 225 P3s O35 Jz) = X(nz’lz) V (p3, 03) (6)

in which

o)
Ly + i% s a}/2, 23/2,...
C ot

Jz
n, = 0, ], seeesy L2 = =Ny, =Ny + 2, ceey No

gy = i], (5 o +1.

In linear coupling, J, is a good quantum number and separate secular

matrices are generated for each value of J,. Upon introduction of quadratic
terms (Eéé(z)(eg) in particular), J, ceases to be a good quantun number. One
can determine, by examining a general matrix element, that {2J, mod 3} remains
a good quantum number. Therefore, the following three sets of basis vectors,

labeled by J,, are coupled by the quadratic terms:
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_}(0 mod 3)’
_‘}(1 mod 3)’
..}(2 med 3). |

{+3/2, +9/2, 15/2..
faoan =B/0, #1472, 47/2, .
{..., =7/2, -1/2, +5/2, .

It is of interest to correlate the {2 J, mod 3} quantum number with irreduci-

ble representations of 0;. It can be shown that {0 mod 3} correlates with

rsg and r7 while both {1 mod 3} and {2 mod 3} correlate with reg. Thus, one dis-

g
advantage of this basis set is that the {0 mod 3} block is not factored as

much as possible (separate r6 and ry sets); nonetheless, with modern com-

9 9
puters and diagonalization routines, this is not a serious drawback.
The main task remaining is to find integrals of powers of vibrational

coordinates over harmonic oscillator functions; these are often referred to

as the primitive matrix elements. General formulae exist7 which allow these
matrix elements to be evaluated simply. g
Primitive matrix elements relevant to the case at hand are:

1/2

£ X0y, 1p)a, K(ng + 1, 25 ¥ Ve = {50 (ny F 0, + 1 (7)
1 W |
s X*(ny, 22)a2 X(np + 2, ¢ + 2)dr = g;-{ (ny + 25 +#2)(ny + 25 + 4)} , f
+ )
- )A
I X*(ny, 22)q2 X(ny, tp + 2)dr = ;—; { a(ny ¥ 2)(ny + 25 + z)} e (9) |
e i
F
[ X*(ng, 22)9, X(ny + 2, 25)dv = %; { (ny - 25 + 2)(n, + 2+ 2)} V2 () !
[ X*(ny, 12),q X(ny, 22)dr = 3= {2np +2) (1) |
o
in which ;

q, = q, t iq
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The desired vibronic matrix elements are then readily found:

e A (])+
/b (ny, 223 p3, 033 J2)<£§; b(ny + 1, 22 + 033 -p3, 033 Jp)dr =

ho
€
(Dz(nz + p3R2 + 2)} 1/2,
>t 2 > Q[a4,]
/b (ng, 225 p3, 033 Jz)éﬂé (2)(a1g)b(n2. 223 p3s 033 Jp)dr = s {ns + 13 ,
) )
€

>t A(2Z)
76 (ng, 23 034 033 92) JB (a]g)g(nz ¥8. sy pne vas dy)de =
ﬁme

Q,la, ] 1/2
—-2—4—]—9—{("2"‘22"'2)("2 -22"'2)} s

»t A(z >
/b (nZ’ L25 P3s O35 Jz)% )(eg)b(n2, 12-203‘, ~P3, 035 J2-3o3)d1' =

L

02[991{4(n2 + p3k2)(ny - p3t2 + 2)}]/2.

+ A
Y () .,
/b (nz, L25 P3s 033 Jz)gégz_ (eg)b(n2 + 2, 23-2p35 -p3s 033 Jr=3p;)dt =
fo
€
1/2
Q2[ey] {(nz = o3ty + 2)(nz - o3ty + 4)} 777,
i 2
v
in which the dimensionless coupling parameters are defined as: 02132%(—3"

[y
€

QZ[a]g] " %:" ’ QZ[ng L gfc’ .

(12)

(13)

(14)

(15)

(16)
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Note that o3 does not appear on the right hand side of any of these equations
and thus two identical secular matrices are generated, one for each value (+1)
of the quantum number o3. It will prove to be interesting, for later consider-
ations (see Section III), to use perturbation theory to find the splitting of
the n, = 1 level due to g(z)(eg) in the unrealistic case of D, = 0 (no linear
coupling). The secular determinant which results from a first order degenerate

perturbation theory treatment of the n, = 1 level, employing equation 15, is

(2 -1x)4 Qz[eg]
4Qz[eg] (2 - 2)

=0 (17)

with solutions

x = 2 t 4 Qz[eg].

These quantities are measured in units of vibrational energy,’kwe. It is possi-
A
ble to obtain a first order expression for 3ﬁ§(2)(a]g) also; however, this is

not necessary since an exact expression easily obtains:

Q.[a,,]
A =(nc+l)\/l+02[a]g]=(n€+1)(1+2—;—]ﬂ—+...). (18)




ITI.  DISCUSSION

Examples of the secular matrix calculation of energy levels of [r8 X eg]QUAD
are given in Figures 1 and 2. The secular matrix used in these calculations
was truncated after n, = 10; a basis of this size results in 44 x 44 matrices
for both the {0 mod 3} and {1 mod 3} blocks (the {2 mod 3} block gives the same
eigenvalues as {1 mod 3}). Under these circumstances it is required that D,
be less than 1 for an accurate description of the levels. The upper limit of
Qz[eg] was not numerically determined, but is probably about 0.5. The behavior
of the levels at these large values of D, and Q, [eg] is quite complicated
due to specific level repulsions.

D, may be taken as positive since the relevant matrix elements are all
off-diagonal (Eqn. 12). The situation with respect to Q, [eg] is more compli-
cated even though it too has all off diagonal matrix elements in the employed
linear JT basis (Egqn. 15, 16). é7f(2 (e ) will have diagonal matrix elements
in a symmetry adapted basis set. The eigenvalues of éﬁf(z) (e ) are inde-
pendent of the sign of Q; [eg], however, the concomitant changes in the eigen-
vectors upon changing the sign of Q) [eg] may alter their symmetry transforma-
tion properties. For Q, [eg] > - Q [eg], re > T'7 and Ty > Tg.

Several general observations can be made based on these calculations:

i) For the case D, = 0 (Figure 1), the perturbation expression Eq. 17 is
found to be useful over a large range of szeg] values (Qz[eg] <0.1) by direct
comparison with results of the truncated secular equation calculation. This
situation arises because éi%(z)(eg) couples n, and n, + 2 levels, but not n,
and n, + 1, as in the linear case.

ii) In the regime (D, <0.2, Qz[eg] <0.05), for the n, = 1 levels, effects
of linear and quadratic terms are found to be approximately irdependent; that is,

the (n, =1, J, = 1/2) level is not shifted appreciably as Qz[eg] increases, center-
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of-gravity of the (n, = 1, J, = 3/2) levels is preserved, and splitting of
(ny =1, J; = 3/2) is approximately the same as in the D, = 0 case.

iii) Behavior of the n, = 2 levels are, however, qualitatively differ-
ent from those of n, = 1 (see Figures 1 and 2); one difference is in the
behavior of the (n, = 2, J = 3/2) levels (Figure 1). For D, = 0, these
levels do not split under éi?(z)(eg), whereas D, # 0 allows admixture of

» = 1,3,... levels, thus causing (n, = 2, J, = 3/2) to split. It should be

A
noted that existing perturbative treatments oféﬁf are not able to generate

this sp1itting,5 although a more complete perturbation calculation would, of

course, reproduce these results.

Based on the form of the perturbation energy expressions for the linear and

A
quadratic JT terms, it can be seen that certain n, levels are split by éﬁS(Z)(eg)
in the first order of perturbation theory (e. g., Eg. 17) while the same n, levels

are split by jﬁﬁ (M only in the second order. 8

It is thus possible for
quadratic JT terms to be more effective at splitting vibronic levels than

are linear JT terms. Examination of the perturbation expressions for the

n, =1 levels verifies this idea:

y (Jo (V) = 2 4 202

V (FE Peg)) = 2 4 a0uley). (19)

D? is used for comparison with 02[e ] since it is proportional to % just as
02[e ] is proportional to C_.. Thus, for DLi = Qz[e ] = , Eqs. 19 show that
the splitting induced by Zﬁg(z)(e ) is an order of magnitude mrv~ than that
induced by,}f(1). Similar results obtain for éﬂf( )(a] ) (see Eq. 18).




B

Available hexafluoride data]'3

show that the splitting induced by the linear
terms is of the same order of magnitude as the quadratically-induced splittings
and shifts. Although these data indicate the expansion oféég in powers of 9
and 9, is not converging as rapidly as migt} be desired, the entire effect
cannot be attributed to non-linearity of éfﬁ?. Greater effectiveness of
éé%(z)(eg) and 45?‘2)(a]g) in causing shifts and splittings is also an

important consideration.
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IV.  CONCLUSION

An accurate numerical method is given for treating vibronic coupling of
rgg (0;) electronic state to an eg vibration for a vibronic Hamiltonian with
linear and quadratic terms. Examples of the calculation are given and general
comments on the behavior of the levels under the influence of quadratic terms
are made. It is also found that the quadratic coupling term is a more effective

perturbation than the linear coupling term with respect to the observed spectro-

scopic splitting.
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Figure 1.

Quadratic Jahn-Teller calculation for coupling of a T'g electronic state with

a “Z(eg) vibration, (r8 X eg)QUAD' The fixed parameter values are D2 = 0 and
vy = 670 cm']. D, is the linear Jahn-Teller coupling parameter and v5 is the
unperturbed v, harmonic oscillator frequency. 02 [eg] is the quadratic
coupling parameter. Note the large range over which the splitting is linear
in 02 [eg], In the method employed here, Ts and r7 levels both arise from the
same secular matrix ( the {0 mod 3} block, see text). The symmetry labels of
the eigenvectors are generated from their transformation properties. Changing

the sign of Q, [eg] will not alter the energies, but will interchange FG and

r7 symmetry labels.
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Figure 2.

Similar to Figure 1 but D, has been set to 0.125. Note that the n, = 1 for
this value of Dz Jevels behave similarly to those for which D2 = 0 in that
one pair of levels splits symmetrically and the other level remains largely
uneffected as Q, [eg] varies. This situation does not hold, however, for the

n, = 2 levels. The J2 quantum number, which is good at Qz[eg] = 0, is

indicated.
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